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Abstract Two unigene datasets of Pinus taeda and Pinus
pinaster were screened to detect di-, tri- and tetranucle-
otide repeated motifs using the SSRIT script. A total of 419
simple sequence repeats (SSRs) were identified, from
which only 12.8% overlapped between the two sets. The
position of the SSRs within their coding sequences were

predicted using FrameD. Trinucleotides appeared to be the
most abundant repeated motif (63 and 51% in P. taeda and
P. pinaster, respectively) and tended to be found within
translated regions (76% in both species), whereas dinu-
cleotide repeats were preferentially found within the 5′-
and 3′-untranslated regions (75 and 65%, respectively).
Fifty-three primer pairs amplifying a single PCR fragment
in the source species (mainly P. taeda), were tested for
amplification in six other pine species. The amplification
rate with other pine species was high and corresponded
with the phylogenetic distance between species, varying
from 64.6% in P. canariensis to 94.2% in P. radiata.
Genomic SSRs were found to be less transferable; 58 of
the 107 primer pairs (i.e., 54%) derived from P. radiata
amplified a single fragment in P. pinaster. Nine cDNA-
SSRs were located to their chromosomes in two P.
pinaster linkage maps. The level of polymorphism of these
cDNA-SSRs was compared to that of previously and
newly developed genomic-SSRs. Overall, genomic SSRs
tend to perform better in terms of heterozygosity and
number of alleles. This study suggests that useful SSR
markers can be developed from pine ESTs.

Introduction

In contrast to other plant species, few polymorphic single-
copy nuclear microsatellite markers or simple sequence
repeats (SSR) have been reported in the Pinaceae
(reviewed in Table1). The genome structure of these
species, characterised by a large physical size (22 pg/C,
Leitch et al. 2001) with a large amount of repeated
sequence (Kriebel 1985; Kamm et al. 1996; Kossack and
Kinlaw 1999; Elsik and Williams 2000) has been the main
obstacle to the development of useful markers. In addition,
the ancient divergence time between coniferous species
(Price et al. 1998) and the complexity of their genomes
means that transferability of single-copy SSRs among
genera and even within Pinus (the most studied genus) is
generally poor, resulting in a large proportion of ampli-
fication failure, non-specific amplification, multi-banding
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patterns or lack of polymorphism (Echt et al. 1999;
Mariette et al. 2001). Given the high cost of developing
useful SSR markers, cross-species transferability is a
valuable attribute.

In an attempt to circumvent these genome-related
problems, Elsik and Williams (2001) removed most of
the repetitive portion of the genome using a DNA
reassociation kinetics-based method, and Zhou et al.
(2002) targeted the low-copy portion of the genome
using an undermethylated region enrichment method. Both
approaches yielded remarkable enrichment for useful SSR
markers in Pinus taeda. Scotti et al. (2002a, b) used an
alternative strategy based on the pre-screening of single-
copy microsatellite containing clones, using dot blot
hybridisation analysis, and also obtained a high number
of single-copy polymorphic SSR markers in Picea abies.
Pinus taeda SSRs developed by Elsik and Williams (2001)
and Zhou et al. (2002) transferred quite well between
American hard pines (Shepherd et al. 2002), but were
shown to be less transferable in the phylogenetically
divergent Mediterranean hard pines (Gonzalez-Martinez et
al. 2004). Interestingly, perfect trinucleotide SSRs trans-
ferred from American to Mediterranean pines better than
other motifs (Kutil and Williams 2001).

Simple sequence repeats have been found in all
genomic regions, including coding regions (Toth et al.
2000). By developing a cDNA library enriched in SSRs,
Scotti et al. (2000) showed the presence of microsatellites
within the coding regions of Norway spruce (Picea abies),
a species belonging to the Pinaceae. The availability of
expressed sequence tags (ESTs) resulting from large
sequencing projects is potentially a valuable source of
SSRs that can be evaluated with less intensive laboratory
development. Recently, cDNA-SSRs were obtained from
EST databases developed in several plant species such as
grape (Scott et al. 2000), cereals (Temnykh et al. 2000,
2001; Cho et al. 2000; Cordeiro et al. 2001; Kantety et al.
2002; Eujayl et al. 2002; Varshney et al. 2002; Gao et al.
2003) and Arabidopsis (Cardle et al. 2000; Morgante et al.
2002). These EST-derived markers showed good transfer-
ability between phylogenetically related species (Eujayl et
al. 2003; Gupta et al. 2003).

The objectives of this study were threefold: (1) to
investigate the relative occurrence and types of SSRs
present in the coding regions of two pine genomes, (2)
compare polymorphism levels of SSRs derived from
cDNA and genomic sources, and (3) compare the
transferability of cDNA-SSRs and genomic SSR markers
across several pine species.

Materials and methods

In silico SSR detection in pine ESTs

Public EST database were independently assembled for
Pinus pinaster and P. taeda using StackPack (Christoffels
et al. 2001). A total of 18,498 P. pinaster ESTs provided
2,893 contigs and 5,001 singletons (http://cbi.labri.fr/

outils/SAM/COMPLETE/index.php). For P. taeda, 8,070
contigs and 12,307 singletons resulted from 75,047 ESTs
(http://web.ahc.umn.edu/biodata/nsfpine/contig_dir16/).

Pinus pinaster and P. taeda unigene sets were searched
for tandemly repeated motifs of 2, 3 and 4 bp using the
SSRIT SSR search tool (Temnykh et al. 2001; http://www.
gramene.org/db/searches/ssrtool), with 14, 15 and 20 as
the minimum repeat length, respectively. We associated
the SSRIT Perl script with the FrameD gene prediction
software (Schiex et al. 2003) to determine if the detected
repeat motifs were located in the 5′ or 3′ untranslated
regions (UTRs) or in the open reading frames (ORF).
FrameD was developed to predict the position of the
translated regions in EST sequences. Because FrameD
uses interpolated Markov models (IMM; Salzberg et al.
1998) to build probabilistic models of coding sequences, a
pine-specific IMM was constructed to enhance the
prediction in P. taeda and P. pinaster sequences. We
used 67 kb from 65 pine full-length coding sequences to
build the Pinus IMM (Table S2). Finally, the sequences
containing microsatellites in P. pinaster and P. taeda were
compared in order to check the redundancy of the
sequences containing SSRs in both species.

PCR primer design and amplification

We designed 56 PCR primer pairs (set no. 1) flanking the
microsatellites identified with our in silico analysis using
Primer v3.0 software (http://www-genome.wi.mit.edu/cgi-
bin/primer/primer3_www.cgi) with default parameters,
except that we used a range of 40–55% for the primer
GC%, GC clamps of 2 bases and a maximum Tm

difference of 10. We kept the expected amplified fragment
length below 500 bp to avoid the risk of the presence of
introns, which may induce PCR failure. Fifty-three out of
56 PCR primers were designed based on P. taeda
sequences and three were developed from P. pinaster
sequences. The PCR primers were chosen to represent the
broadest range of SSRs possible considering the repeat
type (di-, tri- or tetranucleotide), the motif (e.g., AG, AT),
the length (5–26 repeats) and the position (UTR or ORF).
In addition to these new SSRs, we also included a set of 16
cDNA-SSRs previously developed from P. taeda se-
quences (set no. 2, C. Echt, http://dendrome.ucdavis.edu/
Gen_res.htm). This second set resulted from a SSR search
using a preliminary sequence dataset of about 10,000 P.
taeda ESTs.

A third set of 107 PCR primers (set no. 3) was
developed from P. radiata genomic SSRs and screened for
amplification success in pine species (C. Echt and T.
Richardson, unpublished data). A fourth set of three SSR
markers described by Mariette et al. (2001) was also used
(set no. 4).

DNA was isolated using the protocol described by
Doyle and Doyle (1990). PCR reactions were performed
with 15 ng of genomic DNA in a total reaction volume of
10 μl, with 1× reaction buffer (Gibco BRL), 2 mMMgCl2,
1 μM of each primer, 0.2 mM of dNTP and 0.5 U of Taq
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polymerase (Gibco BRL) on a Stratagene Robocycler
Gradient 96 (Stratagene, La Jolla, Calif., USA) using the
following cycles: preliminary denaturing (94°C, 5 min)
followed by 30 cycles of denaturing (94°C, 30 s),
annealing (locus-specific temperature, 30 s), and extension
(72°C, 1 min), and a final extension (72°C, 10 min). An
additional touchdown was performed for some loci (10
cycles with the annealing temperature decreasing by 1°C
for every cycle).

Amplification success was checked on 1.5% agarose
gels. We checked that the amplification showed a single
band pattern with a size corresponding to the expected
length. Amplifications resulting in multiple bands were
discarded from further analysis since they could result
from non-specific amplification or paralogous loci. The
useful loci were then run on a LICOR automated
sequencer using the same conditions described by Mariette

Table 1 Di-, tri- and tetranucleotide SSR detection in Pinus pinaster and P. taeda unigenes using SSRIT software
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et al. (2001) to precisely determine the length of each
amplification product (i.e., allele).

Sequencing

Amplified fragments in P. pinaster were cloned and
sequenced as described by Dubos and Plomion (2003) in
order to check the orthology of the same markers as based
on sequence identity.

Plant material

Polymorphism and reliable co-dominant inheritance were
tested in three P. pinaster mapping pedigrees (the INRA-
F2 pedigree, Costa et al. 2000; the INRA-G2 pedigree
Chagné et al. 2002; and the AFOCEL-F1 pedigree, Ritter
et al. 2002) for which saturated genetic maps are available,
and a fourth (INIA-F1) which is under construction (M.T.
Cervera, unpublished data). Loci that were polymorphic in
at least one mapping pedigree were also tested on 26
unrelated P. pinaster elite trees from the Aquitaine region
(south-western France). These trees are first generation
selections for the P. pinaster breeding programme and
were used to estimate the level of diversity (heterozygosity
and number of alleles) of the SSRs.

Samples from seven species belonging to the genus
Pinus (subgenus Pinus): P. canariensis, P. halepensis, P.
pinaster, P. pinea, P. radiata, P. sylvestris, and P. taeda
were used to test the amplification rate of the cDNA-SSR
markers.

Mapping

Markers segregating in the INRA-G2 and INRA-F2
mapping pedigree were visually scored and assigned two
allele genotypes. We used Joinmap v3.0 (Van Oijen and
Voorrips 2001) using a minimum LOD of 6.0 for genetic
map construction. The Arlequin software (Schneider et al.
2000) was used to estimate genetic diversity parameters
based on the genotypes of the 26 unrelated P. pinaster
individuals.

Results

SSR detection in pine ESTs and sequence annotation

A total of 251 and 168 SSRs were found in P. taeda and P.
pinaster unigene sets (Table S3). This corresponds to
enrichment rates of 1.2 and 2.1%, respectively (Table 1).
The most common repeat types were trinucleotides (63%
in P. taeda and 51% in P. pinaster), followed by
dinucleotides (36% in P. taeda and 45% in P. pinaster).
Tetranucleotide repeats were almost absent (1% in P. taeda
and 3% in P. pinaster). These results were obtained for a
minimum repeat number of 7, 5 and 5 for di-, tri- and
tetranucleotide motifs, respectively. These thresholds are
comparable to those used by Cardle et al. (2000) and Scott
et al. (2000), and correspond to perfect motifs only. If we
used less stringent detection criteria (e.g., minimum of 5
repeats for dinucleotides, as in Morgante et al. 2002) and
allowed the detection of compound motifs we have
estimated that the SSR enrichment would increase by
twofold.

Fig. 1 Distribution of the dif-
ferent classes of di- and trinu-
cleotide SSRs in Pinus taeda
(grey boxes) and P. pinaster
(black boxes) unigenes
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Regarding the types of repeated motif (Fig. 1), the AT
and AG motifs were the most represented among the
dinucleotides (76 and 19% in P. taeda, and 47 and 51% in
P. pinaster, respectively), whereas the AC and CG types
were rare (<3% in both species). Regarding trinucleotides,
the AAG motif was the most common repeat type (23.9
and 19.3% in P. taeda and P. pinaster, respectively),
followed by AGC and AGG motifs.

Figure 2 shows the position of the detected SSRs in the
gene sequences of both species based on the results
obtained with FrameD (Schiex et al. 2003). Significant
differences between di- and trinucleotide SSRs were
observed. Dinucleotides were found mostly in the UTRs
(75 and 65% in P. taeda and P. pinaster, respectively),
whereas trinucleotides were more frequent in the ORFs
(76% in both species). For both type of repeats, SSRs were
less abundant in the 5′ UTR than in the 3′ UTR.

By assembling the P. taeda and P. pinaster contigs and
singletons that contained SSRs using StackPack (Chris-
toffels et al. 2001), we found that only 22 of the 171
(12.8%) P. pinaster sequences matched contig sequences
in the P. taeda unigene set, providing a catalogue of 397
non-redundant putative SSR markers for pines.

Transferability of cDNA and genomic SSRs in pines

As a representative sample, 72 primer pairs (sets no. 1 and
2) were designed from cDNA-SSR sequences. Fifty-two
out of the 69 P. taeda and one out of the three P. pinaster
cDNA-SSRs amplified a single band of the expected size
in the source species. The multi-banding pattern observed
for five loci could be attributed to non-specific amplifica-
tions or the presence of multi-gene families that are
frequent in pines (Kinlaw and Neale 1997). The lack of
amplification obtained for 14 loci, could be explained by
the quality of the primer pairs and/or the presence of
introns. Table 2 summarises the amplification success for

these 53 cDNA-SSR markers in seven pine species.
Overall, the amplification rates in non-source species
ranged between 64.6% in P. canariensis and 94.2% in P.
radiata. This transferability rate was comparable to the
result obtained with EST-derived markers in pines (Brown
et al. 2001; Chagné et al. 2003; Komulainen et al. 2003).

Fifty-eight out of 107 (54%) of the set no. 3 P. radiata
SSR markers amplified a single band in P. pinaster. This
transferability rate was higher than of Gonzalez-Martinez
et al. (2004) in P. pinaster using P. taeda-derived SSRs
(42%), and that of Shepherd et al. (2002) in P. elliottii and
P. caribaea using P. radiata-derived SSRs (44%). Overall,
the interspecific transferability of cDNA-SSR markers was
higher than that of the genomic SSRs.

Polymorphism, orthology, and genetic mapping of
cDNA and genomic SSRs in Pinus pinaster

Among the 46 single-copy cDNA and 58 genomic SSR
loci that amplified in P. pinaster, nine (19.5%) and seven
(12%) were found to be polymorphic in at least one of the
four mapping pedigrees, respectively. Six out of 18 (33%)
of the cDNA-SSRs located in UTRs were polymorphic,
compared to three out of 30 (10%) of those located in
ORFs. This result suggests that a pre-annotation of the
sequences containing SSRs can be used to enrich for
primer pairs that yield polymorphic cDNA-SSR markers.
If we consider the repeat type and position of the cDNA-
SSRs (Table 2), then it should be noted that five out of 17
dinucleotide cDNA-SSRs (29%) were polymorphic in at
least one P. pinaster mapping pedigree whereas four out of
35 (11%) trinucleotide cDNA-SSRs were polymorphic.

We verified the orthology for the seven polymorphic
SSR loci originated from P. radiata genomic library by
sequencing PCR products obtained by amplifying P.
pinaster DNA. The high levels of sequence identity
found for six of the loci (Table 3) were comparable to the
levels found between orthologous pine ESTs in previous
studies (Brown et al. 2001; Chagné et al. 2003;
Komulainen et al. 2003). Interestingly, one locus
(NZPR1702_b) was not homologous between the species
and did not contain an SSR motif. Electrophoresis on an
acrylamide gel showed that this locus presented two
distinct bands, 30 bp apart (i.e., two alleles corresponding
to an insertion-deletion polymorphism). This locus
presented the lowest genetic diversity (H=0.38), and was
subsequently discarded for the comparison between
genomic and cDNA SSRs (see next section).

The chromosomal assignments of 19 polymorphic SSR
markers in the INRA-G2 and INRA-F2 genetic maps
(Chagné et al. 2002; Costa et al. 2000) and their
polymorphism state in two other P. pinaster pedigrees
are presented in Table 4. All the loci were linked with a
minimum LOD of 6.0, except for locus ssrPt_ctg275 that
was not linked to any linkage group in either of the maps.
The three SSR markers of set No. 4 previously developed
by Mariette et al. (2001) were also mapped in both
pedigrees. Overall, these SSRs made it possible to align

Fig. 2 Distribution of the di- and trinucleotide SSRs within the
open reading frame (ORF, in white) or in the 5′ untranslated regions
(UTR, dark grey) and 3′ UTR (light grey) in P. taeda and P. pinaster
contigs. Sequences for which no ORF could be detected were not
considered
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eight of the 12 linkage groups between the two maps.
Linkage group homology was also confirmed using a set
of ESTPs mapped in the INRA-G2 (Chagné et al. 2003)
and INRA-F2 pedigrees (D. Chagné and P. Semat,
unpublished data).

Level of diversity of cDNA and genomic SSRs in
Pinus pinaster

The nine polymorphic cDNA-SSR loci and 10 polymor-
phic genomic SSR loci were genotyped in 26 unrelated P.
pinaster trees. Their expected heterozygosities (H) and
number of alleles (A) are shown in Table 4. Within the
cDNA-SSRs, there was no significant difference between
the heterozygosity values obtained in the ORF and the
UTRs, or between tri- and dinucleotide SSRs (F test with a
P value of 0.46). Within the genomic SSRs, a significant
difference (F test with a P value of 0.11) of the diversity

parameters was found between the loci transferred from P.
radiata and those were developed from P. pinaster and P.
halepensis by Mariette et al. (2001). This difference
suggests that genomic SSRs tend to be less polymorphic
when transferred from phylogenetically distant species; P.
radiata belongs to the Oocarpeae subsection, whereas P.
pinaster and P. halepensis belongs to the Sylvestres
subsection of the pine genus (Mirov 1967). Finally, the
level of diversity was not different between the transferred
P. radiata genomic SSRs and the cDNA-SSRs (F test with
a P value of 0.27).

Table 3 Pinus radiata genomic SSR markers that were mapped in P. pinaster and marker sequence homologies between P. pinaster and P.
radiata

Primer
set

Locus
name

Repeated
motif

Forward
primer

Reverse
primer

Annealing
temperature (°C)

Expected
length (bp)

Sequence
homology (%)

3 NZPR1078 AC10 tggtgatcaagcctttttcc gttgatgagtgatggcatgg 53 342 91.5
3 NZPR114 CA15... CA13 TA22 aagatgacccacatgaagtttgg ggagctttataacatatctcgatgc 56 193 88.2
3 NZPR1702_b AC15 CA13...AT5 tatgattggaccattggggt ccaaaccctcctccacatatc 53 187 No homology
3 NZPR413 TG23 GT6 tgaacctcgatggaatagcc cccgccttgcatcaatta 53 253 89.1
3 NZPR472 AC13 gagaaaattcaaccaccgga ggttgtagggcagtgaatcc 53 309 89.4
3 NZPR544 CA5AC12 TA5 gcgatgtgcaacccttgata tgctattccgtcaaaaaccc 56 286 86.1
3 NZPR823_a AC57 tatcgggagcaagttatgcc tgcactctttttcgtctcca 53 296 92.5

Table 4 Chromosomal assign-
ment and genetic diversity
parameters of the three classes
of microsatellites genotyped on
26 unrelated P. pinaster trees.
The mapping location in the
INRA-G2 (following linkage
group numbering of Chagné et
al. 2002) and INRA-F2 maps
(following linkage group num-
bering of Costa et al. 2000) are
indicated. M Monomorphic, P
polymorphic, UL unlinked, H
heterozygosity, A number of
alleles

aThese values were not taken
into account for the comparison
of diversity parameters between
cDNA and genomic SSRs

Marker type Primer
set

Locus ID Mapping pedigree Genetic
diversity

INRA-
G2

INRA-
F2

AFOCEL-
F1

INIA-
F1

H A

cDNA-SSR 1 RPtEST11 5 2 P M 0.74 4
1 RPtEST13 10 M M M 0.66 3
2 SsrPp_cn524 6 1 P M 0.81 5
2 SsrPt_ctg275 P/UL P/UL P P 0.74 8
2 SsrPt_ctg4363 M 12 P M 0.68 4
2 SsrPt_ctg7824 10 M M M 0.35 2
2 SsrPt_ctg988 11 M P M 0.55 3
2 SsrPt_ctg1525 M 11 M M 0.16 2
2 SsrPt_ctg64 3 3 M P 0.68 4

P. radiata
genomic SSR

3 NZPR1078 2 7 P M 0.68 4
3 NZPR114 M 5 M P 0.68 5
3 NZPR1702_b 11 6 P M 0.38a 2a

3 NZPR413 4 8 P P 0.58 4
3 NZPR472 1 M P P 0.67 4
3 NZPR544 M 3 M P 0.41 4
3 NZPR823_a 5 M P P 0.67 3

P. pinaster and P. hale-
pensis
genomic SSR

4 FRPp91 1 9 P P 0.85 9
4 FRPp94 10 5 P P 0.80 8
4 ITPh4516 3 3 P P 0.84 8
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Discussion

Composition and distribution of SSRs in the expressed
genome of pine

The SSR composition of the coding region of the pine
genome was first compared to the results published in
other plant species. In dicotyledonous species where
cDNA-SSR evaluations have been reported: i.e., Vitis
vinifera (Scott et al. 2000) and Arabidopsis thaliana
(Cardle et al. 2000; Morgante et al. 2002), the most
represented repeat types, i.e., AG, AT, AAG, AGG and
AGC, were also found to be the most frequent in pines
(Fig. 1). Conversely, the most common repeated motif in
monocotyledonous species (Varshney et al. 2002), CCG,
was quite rare in pines (5.2 and 7.2% in P. pinaster and P.
taeda, respectively). This result suggests that the SSR
composition of gymnosperms genes is more similar to that
of dicots than monocots. However, given the few number
of species analysed, this interpretation remains to be
confirmed.

The presence of a majority of trinucleotides in the ORFs
(Fig. 2) was also in agreement with that whichhas been
described in other plants. Morgante et al. (2002) showed a
strong positive selection for trinucleotides in the translated
regions of A. thaliana. Metzgar et al. (2000) explained the
excess of triplet repeat microsatellites in the coding
regions by the effect of important mutation pressures.
Indeed, a mutation in a mono-, di-, tetra- or pentanucleo-
tide SSR in the ORFs would result in a frameshift that
could change the translated protein structure and function.

Morgante et al. (2002) detected much higher levels of
SSRs in the 5′ UTRs, especially AG/CT repeats. The
rather small number of SSRs detected in the 5′ UTRs of
pine genes (17.4%, Table S3) contrasted with their results
and could reflect a true feature of pine genes or it could
simply be that the low coverage of the 5′-end in the pine
ESTs has provided a bias. Some support for the latter view
comes from ESTs obtained from the sequencing of the 5′
ends of 3′ anchored cDNAs (Frigerio et al. 2004; Kirst et
al. 2003). Therefore, the 5′ UTRs were probably under-
represented in the two pine EST collections analysed.

Transferability of cDNA and genomic SSRs in pines

From 64.6 to 94.2% of the pine cDNA-SSRs transferred to
one or more of the seven pine species tested (Table 2). It
has been clearly shown that the transferability of molec-
ular markers (including SSRs) depends on the phyloge-
netic distance between species. Most of the markers
developed in this study originated from P. taeda, an
American pine which belongs to the Pinus section of the
subgenus Pinus (Mirov 1967). It is not surprising,
therefore, that the highest transfer rate was observed for
P. radiata markers (94.2%), another American pine
belonging to the same section. Similarly, the transfer rate
decreased for SSR markers of Mediterranean pines of the
same section (P. pinaster, 86.8%; P. sylvestris, 85.4%; P.

halepensis, 72.9%), and was even lower with Mediterra-
nean pine markers of the more distant section Pinea (P.
pinea, 70.8%; P. canariensis, 64.6%). We also anticipate a
lower transferability of cDNA-SSR markers in the subge-
nus Strobus, or even within other genera of the Pinaceae
family. However, the transferability rates in these more
distant species should be higher for cDNA-SSR markers
compared to genomic SSRs (Echt et al. 1999).

Similar rates of cross-species transferability were
reported using EST-derived SSR markers in the genus
Medicago (Eujayl et al. 2003, 89%) and within the
Poaceae (Gupta et al. 2003, 55%). Comparatively,
genomic SSR markers have shown to be less transferable
in pine (54% between P. radiata and P. pinaster, this
study; 29% between P. strobus and P. radiata, Echt et al.
1999; and 42% between P. taeda and P. pinaster,
Gonzalez-Martinez et al. 2004). This rate is low compared
to other plant genera (e.g., up to 85% between Glycine
spp., Peakall et al. 1998). These results suggest that the
data mining of pine cDNA libraries is valuable approach
to develop transferable SSR markers. Furthermore, it
should be noted that the cDNA-SSR markers were
obtained without library screening. Clearly the develop-
ment of pine sequence databases and the in silico approach
described here provides a cost-effective approach to SSR
marker development.

In rice and wheat, EST-derived SSR markers have been
reported to have lower rate of polymorphisms compared to
SSR markers derived from genomic libraries (Cho et al.
2000; Eujayl et al. 2002). However, such differences were
not found in Medicago (Eujayl et al. 2003) and Picea
(Scotti et al. 2000) two highly polymorphic genera
compared to the highly domesticated cereal crops. Our
findings in P. pinaster revealed that non-source species
genomic SSRs and cDNA-SSRs have similar levels of
diversity and thus cDNA-SSRs are not less polymorphic.

At the intraspecific level, these markers have been
mapped within the different genetic maps of P. pinaster,
which will make it possible to construct a consensus map
of this species. Nevertheless, more markers will be needed
to reach the saturation levels desired. The markers
developed in this study were also mapped in the P.
pinaster genetic map that was aligned with the loblolly
pine map using comparative genome mapping (Chagné et
al. 2003) and so can be used as orthologous markers in
other conifer species.

Conclusion

We have shown in this study that database-sourced cDNA-
SSRs can be efficiently developed for, and transferred
across, pine species. Pine SSR markers developed in this
way are less expensive to produce and are as informative
as SSR markers derived from other (genomic-based)
methods. However, since these markers correspond to
transcribed regions, further study is necessary to determine
if they behave as neutral markers or not, if they are to be
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used in genetic diversity analysis and in association
studies
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